A High Resolution Precipitation Dataset over CONUS: Climatology-Calibrated Precipitation Analysis (CCPA)

Dingchen Hou¹, Mike Charles^{1,*}, Zoltan Toth^{1,#}, Yuejian Zhu¹, Roman Krzysztofowicz², Yan Luo¹, Ying Lin¹, Pingping Xie³, Dong-Jun Seo⁴, Malaquias Pena¹ and Bo Cui¹

¹ Environmental Modeling Center/NCEP/NWS/NOAA, Camp Springs, MD
² University of Virginia, Charlottesville, VA
³ Climate Prediction Center/NCEP/NWS/NOAA, Camp Springs, MD
⁴ Office of Hydrology Development/NWS/NOAA, Silver Springs, MD

* Current affiliation: Climate Prediction Center/NCEP/NWS/NOAA, Camp Springs, MD # Current affiliation: Global System Division/ESRL/OAR/NOAA, Boulder, CO

Acknowledgements

Steve Lord, EMC/NCEP/NWS/NOAA Letitia Soulliard, HPC/NCEP/NWS/NOAA

5th NAEFS Workshop, Juitepec, Mexico, 17-19 May 2010

Why do we need another dataset?

- Want an accurate, 5x5 km (NDFD), 6-hourly precip grid
 - 1. Downscale NAEFS precipitation forecasts to NDFD
 - 2. Verify NAEFS precipitation forecasts
 - 3. Input to Bayesian Processor of Ensemble (BPE)
- What do we Have?
 - Stage IV
 - CPC
- Note: This effort has limitations, as it was developed to simply combine existing datasets. Much more work will be needed for a more comprehensive approach, but this is out of the scope of this work

What is Stage IV

National Stage IV QPE product

- Mosaicked from Individual RFC's Multi-sensor Precipitation Analyses (<u>RMPA</u>s)
- Available within 1h of receiving any new hourly/6-hourly data from one or more RFCs.
- 12 RFCs over CONUS
- Some manual QC at RFCs
- 4km HRAP grid

Why Calibration?

(following Charles et. al)

- Want an accurate, 5x5km (NDFD) 6-hourly precipitation for
 - Down scaling NAEFS precip forecast to NDFD
 - Verifying NAEFS precipitation forecast
- Stage IV, a good candidate but ...
 - ✓ High resolution (close to NDFD) → better representation of fine scale temporal and spatial variability

Non-uniform QC (different RFCs have different methods)

Each RFC may make their own adjustments before mosaicking

- CPC Unified Precipitation Analysis
 - Back to 2000 (eventually back to 1979, then 1948)
 - ½° spatial resolution
 - Daily
 - Global land
 - ✓ More confidence in long term statistics of CPC dataset
 - a. Uniform QC across entire domain
 - b. Gauge-based

Too low resolution for downscaling

Comparison of CPC and Stage IV

BHADS: DOLA/DES

Stage IV: Geometric Boundary

How to Calibrate

- *Solution*: adjust Stage IV grids so their climatology is consistent with the CPC dataset
 - ✓ Have the reliability of the CPC dataset, with the high spatial and temporal resolution of the RFC dataset
- Note: This effort has limitations, as it was developed to simply combine existing datasets. Much more work will be needed for a more comprehensive approach, but this is out of the scope of this work

Flow Chart

Establish Statistical Relationship

1. Historical data sets

June 1 2002 to July 31 2009 For CPC and STAGE IV

2. Match resolutions

- a. Accumulate RFC over 24 hours
- b. Interpolate to \(\frac{1}{8}\circ\) (copygb w/ volume preservation)

3. Collect precip samples

- a. For each day of the year and at each grid point, collect all precip within 60 day window centered around that day, over all 7 years (max ~427 data points)
- b. Use only data points with ST4 > 0

4. Linear regression

a. $CPC = a \cdot ST4 + b$

End Result

Linear relationship (a & b) on ½° grid for each day of the year

Regression Aug. 1st (SW US, Summer Gaps, maximum 369 points)

Filling the gap in Space (linear interpolation)

-2 -1 -0.5 -0.2 0 0.2 0.5 1

CHURCH COLLABORS

CHARGE COLLABORS

Time Series; Gap is filled by Spatial Interpolation

e co

O ES

Temporal Smoothing (3 harmonics) of a

CAMB: COLA/CEB

Temporal Smoothing (3 harmonics) of b

CAME: COLA/CES

Adjustment with raw and filled a&b: $ST4* = a \cdot ST4 + b$

10

15 20 30 40 50 70

Recovering Original RFC Resolutions

Spatial Disaggregation

- Information is lost in ST4* (from H to L res.)
- What does lost information look like?
 - ST4,Take ratio H/L (below) from the original ST4
 - This ratio can be used to put high resolution information back into ST4*
- 1. Interpolate ST4* to HRAP
- 2. Multiply by H/L
- End with ST4* at HRAP resolution.
- Spatial information recovered from ST4_{orig}

Recovering Original RFC Resolutions

Temporal Disaggregation

1. Determine percentage of daily total precipitation in each 6-hour period in original ST4

2. Divide 24 hour ST4* into four 6-hour precip amounts using the percentages from original ST4

Percent of daily total in each 6-hourly period

Implementation Details

Rules

- Only Non-Zero Stage IV is adjusted
- Zero values remains zero
- Adjustment is applied over CONUS LAND only

Leap Year

- 366 day convention is adapted in regression calculations
- Feb 29 has its own regression coefficients a and b

• Spatial Continuity

- US Boundaries
- Land/Ocean Boundary
- Zero/Non-Zero Boundary

Rare cases of abnormal regression coefficients

- Temporal smoothing of a and b reduces abnormal values
- Discard the regression coefficients a and b, if too large
- Set an upper limit to the adjusted St4 value

An Example Feb. 5 2010

ADJ precip, acc. 6h ending 2010020518

ADJ precip. acc. 6h ending 2010020600

STAGE IV 02/05

Comparison of Stage IV and CCPA Wrt. CPC

Comparison of time series of CPC, Stage IV and CCPA

- Example: A Point (42N, 102W) near Ashby, NE
- Selected from 0.125 deg datasets for June 1 July 31 2008

Concluding Remarks

- A new dataset of precipitation analysis, over CONUS at 6h, 4km resolution
- Statistical adjustment of Stage IV data with same resolution toward CPC analysis
- A combination of the Stage IV and CPC Unified Precipitation Analysis
- Simple linear regression at 0.125 degree and 24h accumulation
- Spatial interpolation and temporal smoothing to regression coefficients
- Keep the fine scale structures of Stage IV
- Closer to CPC Unified Precipitation Analysis, in the sense of climatology
- Provide a proxy of truth for precipitation forecast calibration and downscaling

What is next?

- •Operational implementation at NCEP, planned for 2010
 - Generate the historical data set of CCPA for 2002-2010
 - Real time generation of CCPA after STAGE IV, once per day
- •Periodic (annual) upgrading regression coefficients with increasing sample size
 - Updating coefficients a and b for real time CCPA
 - Re-generate the CCPA historical data set?
- •Improving the methodology